ONE CASE OF THE EXPLOSION
OF A SYMMETRIC VARIABLE-THICKNESS
SURFACE CHARGE

N. B. Il'inskii, A. G. Labutkin, UDC 534.22.2
and R. B. Salimov

Within the framework of the model of explosion phenomena proposed by M, A, Lavrent'ev, the
plane problem of determining the shape of the excavation during the explosion of a constant-
thickness surface charge is solved (when the pulse pressure is constant over the width of the
charge). The problem of determining the shape of the excavation during the explosion of a sur-
face charge whose section thickness varies linearly is considered below for the same model of
explosion phenomena called "solid-liquid" [2]. (The problem reduces to a homogeneous linear
Hilbert boundary-value problem with discontinuous coefficients. The solution is obtained in
closed form, and recommendations are given for its practical realization.)

Let an excavation of cross section CDC, (Fig. 1) be formed in the explosion of a long charge with sec-
tion ABB'A'BY B, which is symmetric relative to the vertical axis. Let us investigate the case when there is
a zone MQNQ+« in the flow domain in which no motion originates; the boundary of this zone (we call it the rest
zone) is the streamline along which the velocity equals the critical value, Because of symmetry, we examine
just the right half of the flow domain which is denoted by G and its boundary which is denoted by I, (z =x +1y).

In conformity with the model taken for the explosion phenomenon, there exists a complex potential w(z) =
o (x, y) +iv (x, y), where o =—B/p ,D isthe pressure pulse, p=const is the density of the liquid (soil), and ¢ is the
stream function.

Let AA'=q, and BB' =qy, where q;<q,. Then the function characterizing the change in thickness of the
charge is written as

S(a)y=lg, — )llz +q» O 2L,

where 2] is the width of the charge. Taking into account that the pressure pulse is proportional to the thick-
ness of the charge, i.e., p=ké [3], where k is a known proportionality factor, we obtain the condition

e=az +a, (0<r<)) (1)
on the section AB of length I on the boundary T', where aq=ka;-q9/pl ; a = —ka;/p.
On the remaining sections of I'z we have
{==0 on AMQNDC, ¢=0on BC, )
v=u, on MQNandDC,
where vy=const is a known critical velocity.

Therefore, according to conditions (1) and (2) either the real or the imaginary part of the function w(z)
which is analytic in G, is known on the straight-line sections ABC, AM, and NHD of theboundary I',,, while Im w(z)
and |dw/dzl| are known on the curvilinear sections MQNandDC, Itis required to find the sections MQN
and DC of the contour I'; (see Fig. 1).
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Let us introduce the complex velocity hodograph plane
o=dw/dz=v, + i(— vy}, 3)
where vy, vy are projections of the velocity vector v on the coordinate axis. The representation
vy=(2a,/a) In [y + F(y) )

is valid for values of vy on the section MA in the neighborhood of the point A, where F(y) is a function bounded
in the neighborhood of the point A, Indeed, by mapping the domain Gy conformally on the half-planeIm ¢ > 0
the complex variable ¢ =¢ +in so that ¢ =« would correspond to some internal point E of the section BC (see
Fig. 1), and writing the Schwartz integral [4] for the function (3) which is analytic in the domain Im ¢ > 0, we
obtain vx—ivy={(a /) In(@— &) +f (&), where f(£)isafunctionbounded in the neighborhood of the point ¢ =g
corresponding to the point A of the boundary T'y. Taking into account that the mapping function z(f) has the
form z(L) = (;—a)i/zfg(g) in the neighborhood of the point a, where f 4(¢) s bounded in the neighborhood of

t =a, f.(a)#0,we obtain the representation (4).

It is seen from (4) that vy —+®as y—0since ¢4 < 0. Therefore, soil ejection intc the atmosphere will
occur in the neighborhood of the point A, to which the domain Gy shown in Fig. 1 corresponds.
The conditions
v, =90, v,>0o0n AM, CB;
v =vi+v;=uvs on MQN, DC; (5)
v, =0, v,<<0on NHD;
vy=0a;<<0on B4
hold on separate sections of the boundary T',.

Taking condition (5) into account, as well as the fact that we should have v > v, everywhere in the domain
Gz, let us construct the domain G, in the w plane (Fig. 2), which will correspond to the domain Gy (correspond-
ing points in the different planes are denoted by the same letters).
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Let us note that the location of the end of the slit H of the boundary I'y, of the domain Gy, is not known.
At the same time, the coefficient a, of (1) characterizing the charge thickness is not used in the method pro-
posed below for solving the problem. Hence, the location of the point H on Ty, i.e., max |{v] on ND, will be
given. Then the charge thickness and the shape of its corresponding excavation upon ejection of the soil will
be determined during the solution of the problem.

Let the function w=w () map the half-plane Im ¢ > 0 of the variable £ =¢ +in conformally on the domain
Gy, sothatthepoints B, A, C of the boundary I, of the domain G, will correspond to the points b, -1, 1 (L1<b<
w) of the { axis. Then some point E of the section BC on the boundary I'y, goes over into the infinitely remote
point ¢ =», The correspondence between the remaining points is shown in Fig, 3. The exact construction of
the function w({) which maps the circular heptagon G,, conformally on a canonical domain is of great difficulty
[5]. Hence, it is expedient to use one of the known approximate methods for the computations (see the remark).

Let us introduce the function z(¢) =x(¢,n) +iy(¢, n)whichisanalytic inthe half-planeImZ > 0 and maps this
half-plane conformally onto the domain G,. Let us represent the function introduced by (3) as

o=|dw/dzje-1, 6

where 6 is the angle formed by the velocity vector v and the positive x axis. Since the sections MQ, QN, DC of
the boundary T'z are streamlines, then (8y/9¢)/(3x/9¢)=tan 6 thereon, or '

{(0z/0%) sin 6 — (0y/IE) cos =0 (m< e < n, d<TE <)
where x=x(¢, 0); y=y{£, 0). On the remaining sections of the { axis we have

AyidE=0 for —oo < t<< — 1, 1 < &< o0;
0x/0% =0 for <t m n<<i<d.
Therefore, we have arrived at the problem of constructing a function dz/d¢ =8x/0¢ +idy/ d¢ which is
analytic in the half-plane Im ¢ > 0 according to the boundary condition

e(E)0xioE - d(E)0yidE=0), (7)
where

e(B)=sin 8(8), d(B)= — cos B(E) for m< & < n, d<E< s
e(8)=0, d(t)=1 for |g >1;
qB=1, dH=0 for —l<i<m n<E<d

Let us establish the class of functions in which the solution of (7) should be sought. For ¢ ={A the func-
tion z'(¢) has a half-power singularity. Here and henceforth, £a, £ C, etc., denote values of ¢ at the points
A, C, ete.

It should be taken into account [4] in investigating the behavior of the function z'(Z) in the neighborhood
of the points M, Q, N, D, C that when the domainboundary in the neighborhood of an angular point consists of cur-
vilinear sections which are analytic arcs, the behavior of the mapping function can differ substantially from its
behavior in the case when the angular point is formed by straight-line sections.

Proceeding analogously to what has been done in [6], it can be shown that the function z'(¢) has a singu-
larity of order 1/2 at the point C, goes into a first order zero at the point Q and is bounded at the points D, N,
M, and has asecond-order zero at the point ¢ =<, z'({).

Therefore, the solution of the linear homogeneous Hilbert boundary-value problem obtained (7) with dis-
continuous coefficients for the function z'(Z)whichis anaiytic inthe half-planeIm¢ > 0 must be sought in the
class of functions which goes to zero in the first order at the point ¢ =q and to zero in the second order at in-
finity, and is alsobounded at the points m,n,d of the { axis while having half-order singularities at the point
-1, 1 of the ¢ axis,

Let us represent the function z'(Z) as
dz/dt=WUL — /(L + 1*1g(D). (8)

where g(f)=p (¢, n) +iv(t,n) is a function bounded at infinity and at the points m,q,n,d of the ¢ axis, and has a
half-order singularity at the points —1, 1ofthe { axis. For 7 =0 we have from (8)

0r{dt - idyidt=[(% — @/t + )] u(®) + (@]
Hence, expressing 8x/ 98¢ and 9y/ 0&, substituting in (7), and dividing out (¢ ~q)/ (£2+1)%, we obtain the bound-
ary condition for g(f) as
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(9

a(B)(§) + b{EW(E)}=0,
where a (£)=(£%-3¢)c(t)— (3¢ 2-1)d(£), b(¢) = (B£2~-1)c(E) +(¢ 3-3¢)d(£). The Riemann problem correspond-
ing to the Hilbert problem (9) is [7] F(¢)=G(¢)F— (5) where FH(&)=g(£), G(E)=—[a(¢) +ib(¢) )/ [a(¢)—ib(e)],
and the function F({) satisfies the condition F+(Z F~(£). On separate sections of the £ axis we find
G(E)= [(ELD/(E—D)P for [E[>1, GE)=—[(E-i)/(E—i)]? for {——i<§<m,
n <<t < d;
GUE)—[(E . V(E — i) Je2i0) for | M<<E<<m,
(B)=1E + )E — T or ldetet.
In conformity with the class of solution established we take as the value of arg G(£) =+ (£)
B, < E<< 1 3B(E) + 2 for { < &< o0;
—331 for —1<<E<<my

3B(E) + 26(8) for
3B(E) — 4 for — o0 <€ &< —1; 3B(B)

(&
3B(E) + 268) for m<E<<n; PE —a for n<E<d
3B(E) +20() for d<TECE,,
' . The index of the

where d< £,<1; B(£)=arg [(¢ +i)/ (& —1)] denotes the continuous hranch for —= < £ <

— 0) — arg G(E, + 0)]=0.

Hilbert problem is
%={1/2x%) larg G(&,
In this case the solution of the Hilbert problem is determined to the accuracy of a real constant [7, 8],
g(D)=do(D), dp=A,=const, ' (10)
where
Y (E) — oy i ¢ 8+ L—i\y(n)de
#{5) = exp [4?;\&(1_% + =) —;:;]
The boundary value of y (§) is expressed by the formula
X®=H(E) exp 17(8)/2, an
where
i L+ Sty (n)dr
- (@) =exp [Zn _LT:TT—_{J
and the integral in the last expression is taken in the principal value sense
(1z)

On the bhasis of (8) and (10) we find
() =4y | 5 1(0)do.

Performing the passage to the limit in (12) as £ — ¢, and separating real and imaginary parts, we obtain

the parametric equations of the boundary T’y
(13)

f (o} ® (o) do,

z =4, ;\B (0 —q)7 E!
"; L= o0 <E<T %),
v=4 | 0 =0/ @®:(0)do }'
where
@ (o) = [o(a% — 3) cos(y(0)'2) -+ (302 — 1) sin(p(0)/2)] (¢ -+ 1)~3;
(6* — 3) sin(y(0)/2) — (30 — 1) cos (y(0)/2)} (* + {)—*

D;{c) = |
Since only the condition of rectilinearity of the section NHD (Fig. 1) was taken info account during the
0, we obtain an equation to determine the parameter q from
{14)

solution, then by requiring that Re zy=Re z{n) =
' of (0) @ (0) do/j'f(o)np(o) do.

!

which
7=



The factor A is found from the condition zB=z(-b)=1:
—1
I=—4, (G—G)f(G)(D(U)dG (15)

Since dw/dz =w(Z), then taking account of (12)

3
w (@)= 4 | i % (0) 0 (0) o,
: i

Hence, the value of the velocity potential ¢ at the point A, i.e., the quantity « 2 in (1), is written as

1
a,=—doBe | =Ly (o) (o) do. (16)
—1 v .

where the boundary value of y (£) is determined from (11).

Knowing q and A, we find coordinates of points of the desired sections MQN and DC of the excavation
boundaries from (13).

Therefore by knowing the physical parameters of the medium p, v,, the energy characteristic of the
charge p and by giving the quantities I, a as well as the maximum velocity on the section ND (see Fig. 1), we
find the quantity a 5 characterizing the thlckness of the charge and the apprepriate shape of the excavation upon
ejection of the soil.

Remark, There is no need to construct all the functions w(Z) mapping the domain Gg ontoIm £ >0 in
the method proposed to solve the problem. It is sufficient to find just its boundary values onthe section(—1, 1)
of the ¢ axis. To do this it is convenient to use electrical analog simulation [9]. First, the domain
G should be transformed into a domain bounded by the function t=1/c, for example. The domain Gi ob-
tained, which is bounded by an exterior circle of radius 1/v, with center at the origin, and an interior
circle of radius 1/2|a | with center shifted a quantity 1/2]a,| on the real axis, as well as the slits NHD,
AM, BC, is shown in Fig. 4. Applying one bus along the slit with the inner circle CBPAM and the other
along the slit NHD, we map the domain G; conformally on the rectangle MNDC (domain G,; with boundary
T'y). Separating the bases MN and CD of the rectangle Gy into equal parts and taking mto account (6)

and the fact that t = (1/vy)el on the boundary Ty of the domain G¢, we find a correspondence between
points of the arcs MN, CD and the boundary I't and points of the bases MN, CD of the rectangle Gy. Further-
more, applying one bus along the semicircle MQN and the other along the semicircle CD, we determine the
position of the point B on the side MC of the rectangle Gy. We find the correspondence between points of the
sectlc}ns NHD and AM of the boundaries T'y and T'y if we take into account that we have 1/t =vel®/2 and 1/t =

1772 o1 the sections NHD and AM of the boundary T't. Then mapping thehalf-planeIm ¢ > 0 (see Fig. 3) onto
the rectangle Gy by means of the Schwartz —Christoffel formula so that the points B, A, C of the boundary I'y
would correspond to the points —b, —1, 1 of the { axis, we establish the dependence 0 (£) on the sections (m, n),
(d, 1) and the dependence v(£) on the sections (~1,m), (n, d) of the ¢ axis. Knowledge of these dependences
permits the determination of 4 by means of (14), A, by means of (15), the construction of the excavation by means
of (13), and the determination of the quantity a, by means of (16).

Particular Case. Let jus investigate the case when no rest zone originates in the excavation during explo-
sion of the charge ABB'A'B, B, (see Fig. 1). The excavation CQMQ,C, corresponding to this case is shown
in Fig. 5. Then the slit NHD will not be in the domain G, (see Fig. 2), i.e., n=h=4d on the ¢ axis (see Fig. 3).

Now we will have in the boundary condition (7)
c(8)=sin 0(§), d(§)= — cos O(§) for m < E < I;
o(€)=0, d(§)=1 for IE > 1; (17)
c(8)=1, d(&)=0 for M <Ei<m.
Taking account of (17) the form of the boundary condition (9) remains as before. We take as the value of G(¢)=
V()
3P(E) + 20(8) for Eo<T E<C1; 3B(E) +-2m for § < E < o0
3B(E) —dafor  — oo <<E<C—1; 3B(E) —3n for —1<E<my
3B(E) 4 26(8) for m << E << &,

where m< £ ,< 1 and B (¢) denotes the same as above. In this case the index of the Hilbert problem is also
.equal to zero. As before, the function z(&) is defined by (12).
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However, now the possibility is provided of giving the charge shape entirely in advance, i,e., the quantity

a s Then we will have the system of equations (15) and (16) to determine the constants Ajand ¢. The Initial
data of the charge should hence satisfy the condition Rez(£)> 0 for g<£ < 1.
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HURLING OF SHELLS BY HOLLOW
CHARGES

V. A, Odintsov, V. V, Selivanov, UDC 533.6.01.011
and S. S. Usovich

Results of the numerical solution of the problem of one-dimensional hurling of shells by hollow
explosive charges are elucidated, The results of the numerical solution are compared with as-
ymptotic formulas., Numerous domestic and foreign papers have been devoted to the gues-
tion of hurling shells by explosive charges. A numerical solution of the problem of convergence
of a ring to the center under the effect of detonation products is presented in [1-3]. The problem
of hurling a shell by a hollow explosive charge with an internal lining is considered in [4]; the
solution of the problem of hurling a shell by a hollow explosive charge without the cavity lining
is presented in [5] on the basis of the energy-balance equations; however, the complete picture
of the processes occurring in the detonation products is not considered.

A shell with a hollow explosive charge is shown in Fig. 1. The detonation products (DP) are initially a

gas at rest with the initial density p,=pBR and the pressure p;= pODz/ 8, whose extension is described by the
Landau ~ Stanyukovich polytropy p=ApX (k=3).

The governing parameters of the problem are the load coefficient 8 =m/M and the relative cavity radins

A =ap/a g where m is the mass of the high-explosive charge, M is the mass of the shell, a, is the radius of
the cavity in the high-explosive charge, and @, is the inner radius of the shell. The shell strength and com-

pressibility are neglected, The charge is in a vacuum,
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