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Within the f r a m e w o r k  of the model  of explosion phenomena proposed  by M. A. Lav ren t ' ev ,  the 
plane p rob l em  of de te rmin ing  the shape of the excavat ion during the explosion of a constant -  
th ickness  su r face  charge  is solved (when the pulse  p r e s s u r e  is constant  over  the width of the 
charge) .  The p r o b l e m  of de te rmin ing  the shape of the excavat ion during the explosion of a s u r -  
face charge  whose sect ion th ickness  va r i e s  l inea r ly  is cons idered  below for the s a m e  model of 
explosion phenomena cal led ' s o l i d - l i q u i d "  [2]. (The p r o b l e m  reduces  to a homogeneous l inear  
Hilber t  boundary -va lue  p r o b l e m  with discontinuous coeff icients .  The solution is obtained in 
c losed fo rm,  and r ecom m enda t i ons  a r e  given for its p rac t i ca l  rea l iza t ion . )  

Let an excavat ion of c ro s s  sect ion CDC,  (Fig. 1) be  fo rmed  in the explosion of a long charge  with s e c -  
t ion A B B ' A ' B ~ B ,  which is s y m m e t r i c  r e l a t i ve  to the ve r t i c a l  axis .  Let us investig~ate the case  when the re  is 
a zone MQNQ. in the flow domain in which no motion or ig ina tes ;  the boundary of this zone (we call it the r e s t  
zone) is the s t r e a m l i n e  along which the veloci ty  equals the cr i t ica l  value.  Because  of s y m m e t r y ,  we examine 
jus t  the r igh t  half  of the flow domain which is denoted by G z and its boundary which is denoted by Fz(Z =x + iy). 

In conformi ty  with the model  taken for the explosion phenomenon,  the re  exis ts  a complex potential  w(z) = 
q~ (x, y) +i$ (x, y),  where  ~ = - " P i p ,  p is the p r e s s u r e  pulse,  p =cons t  is the densi ty of the liquid (soil), and ~ is the 

s t r e a m  function. 

Let A A ' = q  1 and BB' =q2, where  ql < q2. Then the function cha rac t e r i z i ng  the change in thickness  of the 

charge  is wr i t t en  as  

6(z) = [(q~ - -  q~)/llx -T q, (0 .~ x ~ l), 

where  2l is the width of the charge .  Taking into account  that  the p r e s s u r e  pulse is propor t ional  to the th ick-  
ness  of  the charge ,  i .e. ,  ~ = k 6  [3], where  k is a known propor t iona l i ty  fac tor ,  we obtain the condition 

~--a~z +a~ ( 0 ~ x ~ l )  (1) 

on the sect ion AB of length l on the boundary Fz ,  where  a l  =k(ql-q2)/P/ ; a 2 = - k q l / P .  

On the r ema in ing  sec t ions  of Fz we have 

~['--0 on AMQNDC, ~c=0 on BC, (2) 

v=v  o oa MQNandDC, 

where  v0=const  is a known c r i t i ca l  veloci ty.  

T h e r e f o r e ,  accord ing  to conditions (1) and (2) e i ther  the r e a l  or  the imaginary  par t  of the function w(z) 
which is analyt ic  in G z is known on the s t r a igh t - l ine  sect ions  ABC, AM, and NHD of theboundary  F z, while I m  w(z) 
and Idw/dz[ a r e  known on the cu rv i l i nea r  sec t ions  MQNandDC.  It i s r e q u i r e d  to find the sect ions MQN 

and DC of the contour Fz (see Fig. 1). 
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Let us introduce the complex velocity hodograph plane 

(o=du.,/dz=v x + i(-- vy), 

where Vx, Vy are  project ions of the velocity vector  v on the coordinate axis. 

~'u=(2al/n) In IYl + F(g) 

The representation 

(3) 

is valid for values of Vy on the section 1KA in the neighborhood of the point A, where F(y) is a function bounded 
in the neighborhood of the point A. Indeed, by mapping the domain G z conformally  on the hal f -p lane  Im ~ > O 
the complex variable ~ = ~ +iV so that ~ = ~ would cor respond  to some internal point E of the section BC (see 
Fig. 1), and wri t ing the Schwartz integral [4] for the function (3) which is analytic in the domain Im ~ > 0, we 
obtain v x - i V y =  (al/Tr) l n ( a -  ~) + f l ( ~ ) , w h e r e  f l ( ~ ) i s  a function bounded in the neighborhood of the point [ =a 
corresponding to the point A of the boundary Fz. Taking into aecomlt that the mapping function z ( [ )  has the 
form z (~) = (~--a)2/2f2(~ ) in the neighborhood of the point a ,  where f 2(~) is bounded in the neighborhood of 

=a , f 2 ( a )  r 0, we obtain the representa t ion  (4). 

It is seen f rom (4) that Vy--.+oo as y ~ 0  since a 1 < 0. Therefore ,  soil ejection into the a tmosphere  will 
occur  in the neighborhood of the point A, to which the domain Gz shown in Fig. 1 corresponds .  

The conditions 

u=--O, uy~O on AM, CB; 

~- = s + s = v~ o, MQm, DC; (5) 
u~.=O, u u~O on NHD; 

v..: = at<~ 0 on BA. 

hold on separa te  sections of the boundary F z. 

Taking condition (5) into account,  as well as the fact that we should have v>  v 0 everywhere  in the domain 
Gz, let us const ruct  the domain G w in the w plane (Fig. 2), which will cor respond to the domain Gz (correspond- 
ing points in the different planes are  denoted by the same let ters) .  

423 



Let us note that  the locat ion of the end of the s l i t  H of the boundary  Fw of the domain G~ is not known. 
At the s a m e  t i m e ,  the coefficient  a ~ of (1) cha r ac t e r i z i ng  the charge  th ickness  is not used in the method p ro -  
posed below for solving the p rob lem.  Hence,  the locat ion of the point H on Fw,  i .e . ,  max  Ivl on ND, will  be 
given. Then the charge  th ickness  and the shape of its co r respond ing  excavat ion upon eject ion of the soi l  will 
be  de te rmined  during the solution of the p rob lem.  

Let  the function o~ =w ([)  map  the ha l f -p lane  Ira  ~ > 0 of the va r i ab l e  ~ = ~ +i7/ eonformal ly  on the domain  
Gw so that  the points B, A, C of the boundary  F w of the domain G w will  co r r e spond  to the points b, -1 ,  1 (1 < b < 
~) of the } axis .  Then some  point E of the sec t ion  BC on the boundary F w goes over  into the infinitely r e m o t e  
point [ = ~. The co r r e spondence  between the r e m a i n i n g  points is shown in Fig. 3. The exact  const ruct ion of 
the function w (~) which maps  the c i r cu l a r  heptagon G w conformal ly  on a canonical  domain is of g rea t  difficulty 
[5]. Hence,  it is expedient to use one of the known app rox ima te  methods for the computat ions (see the r e m a r k ) .  

Let us introduce the function z(~) =x(~ ,~) + iy(~ ,  r/)which is analyt ic  i n t h e h a f f - p t a n e I m ~  > 0 and maps  this 
ha l f -p lane  conformal ly  onto the domain G z. Let us r e p r e s e n t  the function introduced by (3) as 

~o =[dw/dzle -~~ (6) 

where  0 is the angle fo rmed  by  the veloci ty  vec tor  ~ and the posi t ive x axis .  Since the sect ions  MQ, QN, DC of 
the boundary Fz  a r e  s t r e a m l i n e s ,  then ( O y / 0  { ) / ( O x / 0  ~ ) = tan 0 thereon,  o r  

(Ox/cg~) sin O--(c3y/O~) cos 0=0 ( m < ~ . < n ,  d < ~ <  1). 

where  x =x({ ,  0); y = y ( ~ ,  0). On the r e m a i n i n g  sec t ions  of the ~ axis  we have 

Oy,'d~=O for - - ~  < ~ < - -  1, 1 <  ~ <  oc; 
dx/d~=O for --1 < ~ < m. n < ~ < d. 

The re fo re ,  we have a r r i v e d  at the p rob l em of cons t ruc t ing  a function dz/d~" = O x / ~  + i ~ y / O ~  which is 
analyt ic  in the ha l f -p lane  Im ~ > 0 accord ing  to the boundary condition 

where  

(7) 

and 0 y / 0  ~, subst i tut ing in (7), and dividing out (~ - q ) / ( ~  2+1)3 we obtain the bound- 

c(~)=sin 0(~), d(})= --  cos 0(~) for m < ~ < n, d <  ~ < i; 

c(~)=0, d (~ ) : i  for I~1 > I; 

c(~)=l, d(~)=O for --1 < ~ < m ,  n <  ~ <  d, 

Let  us es tab l i sh  the c lass  of functions in which the solution of (7) should be sought. For [ = CA the func- 
t ion z ' (~)  has a ha l f -power  s ingular i ty .  Here  and hencefor th ,  ~A, [ C ,  etc. ,  denote values  of ~ at the points 
A, C, etc.  

It should be taken into account [4] in invest igat ing the behavior  of the function z ' (~)  in the neighborhood 
of the points M, Q, N, D, C that when the domainboundary  in the neighborhood of an angular point cons is t s  of cu r -  
v i l inear  sec t ions  which a r e  analyt ic  a r c s ,  the behavior  of the mapping function cart differ  substant ia l ly  f r o m  its 
behavior  in the case  when the angular  point is fo rmed  by s t r a igh t - l ine  sect ions .  

Proceeding  analogously to what has been done in [6], it can be shown that  the function z ' (~)  has a s ingu- 
l a r i ty  of o rder  1 / 2  at the point C, goes into a f i r s t  o rde r  ze ro  at the point Q and is bounded at the points D, N, 
M, and has a s e c o n d - o r d e r  ze ro  at the point ~ = ~ ,  z ' (~ ) .  

T h e r e f o r e ,  the solution of the l inear  homogeneous Hi lber t  boundary-va lue  p rob l em obtained (7) with dis-  
continuous coeff ic ients  for the function z '  (~)which is analyt ic  in the ha l f -p lane  Im ~ > 0 must  be sought in the 
c lass  of functions which goes to ze ro  in the f i r s t  o rde r  at the point ~ =q and to ze ro  in the second o rder  at in- 
finity, a n d i s a l s o b o u n d e d a t t h e p o i n t s m ,  n ,d  of the ~ axis while having ha l f -o rde r  s ingular i t ies  at the point 
- 1, 1 of the ~ axis .  

Let us r e p r e s e n t  the function z ' (~ )  as 

dz/d~= [(~ -- q)/(~ + i)3]g(~), (8) 

where  g([)  =/z(~, 77) +iv(} ,r/) is  a function bounded at infinity and at the points m , q ,  n, d of the ~ axis ,  and has a 
h a l f - o r d e r  s ingular i ty  at the points - 1 ,  l o f t h e  ~ axis .  For  ~1 =0 we have f r o m  (8) 

8.~.18~ + i8yi8~= [ (2  - -  q)!(~ .~ i )  3 ] {u,(~) + / , v ( ~ ) ] .  

Hence, exp re s s ing  Ox/O~ 
a r y  condition for g(~) as  
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a(~_)rt(~) + b(bv(b=0, (9) 

w h e r e  a ( [ )  = ([ 3_ 3 ~ )c (~) - (3~ ~'- 1)d (~), b (~) = (3~ 2_ 1)e (~) + (~ 3_ 3~ )d (~). The R iemann  p r o b l e m  c o r r e s p o n d -  
ing to the Hilber t  p r o b l e m  (9) is [7] F+(~ ) =G(~ ) F - ( ~  ), w h e r e  F+(~ ) =g(~ ), G(~ ) = -  [a(~ ) +ib(~ ) ] / [a(~ ) - ib (~  )], 
and the  funct ion  F(~) s a t i s f i e s  the condi t ion  F+(~) = F - ( ~ ) .  On s e p a r a t e  sec t ions  of the ~ axis  we find 

G(D= [([ +i)/(~.--i)] ~ for I~1>1, G([)=--[([~-i)/([--i)] sfor { --in < <~[<m'< d; 

G(~)=[([ -~ ~)/([ --  i)]~e~-~e(~) for [ m < ~ < n, 
[ d < ~ < ~ .  

In c o n f o r m i t y  with the  c l a s s  of  so lu t ion  e s t ab l i shed  we take  as  the value  of  a r g  G(~ ) =T (~) 

3p([) + 20(~) for ~o < ~- < 1; 3fi([) ~- 2n for t < ~ < cr 

3~(~)- -4 : r  for - -  ~ < ~ < - - 1 ;  3 ~ ( ~ ) - - 3 n  for - - l < [ < m ;  
3~([) -t- 20(~) for m < ~ < n; 3~(~) --  .~ for n < ~ < d; 

3~([) -I-20(~) for d < ~ < ~ o ,  

whe re  d < ~ 0 < 1; f~ (~) = a r g  [(~ + i ) / ( ~  - i ) ]  denotes  the cont inuous b r a n c h  for  - ~ < ~ < ~. The index of  the 
Hi lber t  problem is 

•  [arg G([0 --  0) --  arg G(~0 + 0)1=0. 

In this ca se  the solut ion of  the Hi lber t  p r o b l e m  is d e t e r m i n e d  to the  a c c u r a c y  of  a r e a l  cons tan t  [7, 8], 

g(;) =A0x(~), A0 =A0 =const,  (10) 

w h e r e  

The bounda ry  value of  X ( [ )  is e x p r e s s e d  by the f o r m u l a  

X([)=!([) exp ~7(~)/2, 

w h e r e  

] (~) = exp ~ S~ ~ 7:-" ~ ~-------~'J' 

(11) 

and the in teg ra l  in the  las t  e x p r e s s i o n  is taken  in the p r inc ipa l  va lue  s ense .  

On the bas i s  of (8) and (10) we find 

t ~ -  q Z(o) do. z ( ~ ) = A  0~ (~+~)~ 
- - [  

(!2) 

Performing the passage to the limit in (12) as ~ -~, and separating real and imaginary parts, we obtain 
the parametric equations of the boundary Fz : 

w h e r e  

i" (o- I 
- - 1  

1 ( -  ~ < ~ <  ~)'  
u = A0 -~J" (o - -  ~1 / (o) r  m) do I 

(13) 

(0) = [o(0" - -  3) cos(7(o)'2 ) ,~ (3o 3 --  1) sin(v(~)/2)] (o 2 • 1)-3; 

(lh (o) = [o (o 2 --  3) sin (7 (o)/2) --  (3o ~ -- i) cos (7 (o)/2)l (o ~ ~ i) -~. 

Since only  the condi t ion of  r e c t i l i n e a r i t y  of  the s ec t ion  NHD (Fig. I) was  taken  into accotm~ dur ing the 
solut ion,  then by  r e q u i r i n g  that  Re z N = R e  z(n) = 0, we obta in  an equat ion to d e t e r m i n e  the  p a r a m e t e r  q h~om 
which 

q = /" e! (o) W (o) d / (o) d) (o) de. (14) 
m 
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The fac tor  A 0 is found f r o m  the condition z B = z ( - b )  =l : 

--1 

l = - A0 ~ (a - -  q) ! (o) r (a) d~. 
-L b 

Since d w / d z  =w (~), then taking account  of (12) 

O r - - q  
w ( ; )  ---- A,, { ~ X (o) co(a) d,~. 

(15) 

Hence,  the value of the ve loc i ty  potent ial  ~p a t  the point A, i .e . ,  the quanti ty a s in (1), is wr i t t en  as 

! 

a . , = - - A o R e  t' s - -q  - . (c ~- i}~ X (o) (0 (c) do,  (16)  
--1 

where  the boundary value of X (~) is de t e rmined  f r o m  (11) ,  

Knowing q and A0, we find coordina tes  of points of the des i r ed  sec t ions  MQN and DC of the excavat ion 
boundar ies  f r o m  (13). 

T h e r e f o r e ,  by knowing the physica l  p a r a m e t e r s  of the med ium p ,  v0, the energ3" c h a r a c t e r i s t i c  of  the 
c h a r g e  ~ and by giving the quant i t ies  l ,  a I as  well  as  the m a x i m u m  veloci ty  on the sect ion ND (see Fig. 1), we 
find the quantity a 9 c h a r a c t e r i z i n g  the th ickness  of the cha rge  and the appropr i a t e  shape of the excavat ion upon 
eject ion of the soil .  

Remark .  The re  is no need to cons t ruc t  all  the functions w([ )  mapping the domain Go: onto Im [ > 0 in 
the method proposed  to so lve  the p rob lem.  It is suff icient  to find just  its boundary  values onthe  s e c t i o n ( - 1 ,  1) 
of the ~ axis .  To do this it is convenient  to use  e l ec t r i c a l  analog s imulat ion [9]. F i r s t ,  the domain 
G~c should be t r a n s f o r m e d  into a domain bounded by the function t=l /o: ,  for  example .  The domain G t ob-  
tained,  which is bounded by an ex t e r i o r  c i r c l e  of radius  1 /v  0 with cen te r  at the origin,  and an in te r io r  
c i r c l e  of radius  1/2]al l  with cen te r  shif ted a quantity 1/21all on the rea l  axis ,  as well  as the s l i ts  NHD, 
AM, BC, is shown in Fig. 4. Applying one bus along the slit  with the inner  c i r c l e  CBPAM and the other  
along the s l i t  NHD, we map the domain G t confo rma l ly  on the rec tangle  MNDC (domain G u with boundary 
ru} .  Separa t ing  the b a s e s  MN and CD of the rec tangle  G u into equal pa r t s  and taking into account (6) 
and the fact  that t = (1 /v , )e  i~ on the boundary I" t of the domain Gt, we find a co r re spondence  between 
points of the a r c s  MN, CD and the boundary  Pt and points of the b a s e s  MN, CD of the rec tang le  Gu. Fu r th e r -  
m o r e ,  applying one bus a long the s e m i c i r c l e  MQN and the other  along the s e m i c i r c l e  CD, we de te rmine  the 
posit ion of the point B on the side MC of the rec tang le  Gu. We find the cor respondence  between points of the 
sectio~as NHD and AM of the boundar ies  r t  and P u if we take into account that we have 1 / t  = r e  irr)/2 and 1 / t  = 
ve 3irr/9 on the sec t ions  NHD and AM of the boundary F t. Then mapping t h e h a l f - p l a n e I m  ~ > 0 (see Fig. 3) onto 
the rec tang le  Gu by means  of the S c h w a r t z - C h r i s t o f f e l  fo rmula  so that  the points B, A, C of the boundary F u 
would co r r e spond  to the points - b ,  - 1, 1 of the ~ ax is ,  we es tab l i sh  the dependence t) (~) on the sec t ions  (m, n), 
(d, 1) and the dependence v(~ ) on the sec t ions  (- 1, m) ,  (n, d) of the ~ axis .  Knowledge of these  dependences 
p e r m i t s  the de te rmina t ion  of q by means  of (14), A 0 by means  of (15), the construct ion of the excavat ion by means  
of (13), and the de te rmina t ion  of the quantity a2 by means  of (16). 

Pa r t i cu l a r  Case.  Let ,us inves t igate  the case  when no r e s t  zone or ig ina tes  in the excavat ion during explo-  
sion of the cha rge  A ] 3 B ' A ' B . B ,  (see Fig. 1). The excavat ion C Q M Q . C ,  co r respond ing  to this case  is shown 
in Fig. 5. Then the s l i t  NHD will not be in the domain G~ (see Fig. 2}, i .e . ,  n = h = d  on the [ axis (see Fig. 3). 

Now we will have in the boundary condition (7) 

c(~)=sin 0(~_), d(~)= --  cos 0(~) for m ~ ~ ~ 1; 
c(~)=O, d(~)=l for l~l > 1; (17) 

c(~)=i, d(~)=O for - - I  < ~ < m. 

Taking account  of (17) the f o r m  of the boundary condition (9) r e m a i n s  as before .  We take as the value of G(~) = 
~/(~) 

31~(~) + 2 e ( ~ )  for ~ o < ~ < 1 ;  313(~) +2r~  for 1 < ~ < ~ ;  
3fi(~) --  4a for -- oo < ~ < --1; 3~(~) - -  3~ for --1 < ~ < m; 

3g(~) --20(~) for m < ~ < ~ 0 ,  

where  m < ~ 0 < 1 and/3 (~) denotes the s a m e  as above. In this case  the index of the Hilber t  p rob l em is a lso  
equa l  to zero .  As be fo re ,  the function z(.~} is defined by (12). 
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However, now the possibility is provided of giving the charge shape entirely fn advance, i.e.. the quantity 
a 2- Then we will have the system of equations (15) and (16) to determine the constants A 0 and q. ']:he initial 
data of the charge should hence satisfy the condition Rez(~)> 0 for q < ~ < I. 
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HURLING OF SHELLS BY HOLLOW 

CHARGES 

V. A. Odin[soy, V. V. Selivanov, 
and S. S. Usovich 

UDC 533.6.01.011 

Resul t s  of the numer i ca l  solution of the p rob l em of one-dirnensional  hurl ing of shel ls  by hollow 
explosive charges  a r e  elucidated. The r e s u l t s  of the numer i ca l  solution a r e  compared  with a s -  
ympto t ic  fo rmulas .  Numerous  domes t ic  and foreign pape r s  have been devoted to the ques -  
tion of hurl ing shel ls  by explosive charges .  A n u m e r i c a l  solution of the p rob l em of convergence 
of a r ing  to the center  under the effect  of detonation products  is p resen ted  in [1-3]. The p rob lem 
of hur l ing a shel l  by a hollow explosive charge  with an internal  lining is cons idered  in [4]; the 
solution of the p rob l em  of hurl ing a shell  by a hollow explosive  charge  without the cavity lining 
is p resen ted  in [5] oll the bas i s  of the ene rgy -ba l ance  equations; however ,  the comple te  p ic ture  
of the p r o c e s s e s  occu r r ing  in the detonation products  is not considered.  

A shell  with a hollow explosive charge  is shown in Fig. 1. The detonation products  (DP) a re  initially a 
gas at r e s t  with the initial densi ty p 0 =P BB and the p r e s s u r e  P 0 : P  0 D2/8, whose extension [s descr ibed  by the 
L a n d a u -  Stanyukovich polyt ropy p =Ap K (k = 3). 

The governing p a r a m e t e r s  of the p rob l e m a r e  the load coefficient  fi = m / M  and the re la t ive  cavi ty  radius  
X =a op/a 0, where  m is the m a s s  of the h igh-explos ive  charge ,  M is the m a s s  of the shel l ,  a 0p is the radius  of 
the cavi ty  in the h igh-explos ive  charge ,  and a 0 is the inner radius  of the shell .  The shell  s t r e n ~ h  and com-  
p r e s s ib i l i t y  a r e  neglected.  The charge  is in a vacuum. 
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